Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Epilepsia Open ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654463

ABSTRACT

Familial epilepsy with auditory features (FEAF), previously known as autosomal-dominant lateral temporal lobe epilepsy (ADLTE) is a genetically heterogeneous syndrome, clinically characterized by focal seizures with prominent auditory symptoms. It is inherited with autosomal-dominant pattern with reduced penetrance (about 70%). Sporadic epilepsy with auditory features cases are more frequent and clinically indistinguishable from familial cases. One causal gene, MICAL-1, encodes MICAL-1, an intracellular multi-domain enzyme that is an important regulator of filamentous actin (F-actin) structures. Pathogenic variants in MICAL-1 account for approximately 7% of FEAF families. Here, we describe a de novo MICAL-1 pathogenic variant, p.Arg915Cys, in a sporadic case, an affected 21-year-old Italian man with no family history of epilepsy. Genetic testing was performed in the patient and his parents, using a next-generation sequencing panel. In cell-based assay, this variant significantly increased MICAL-1 oxidoreductase activity, which likely resulted in dysregulation of F-actin organization. This finding provides further support for a gain-of-function effect underlying MICAL-1-mediated epilepsy pathogenesis, as previously seen with other pathogenic variants. Furthermore, the case study provides evidence that de novo MICAL-1 pathogenic variants can occur in sporadic cases with epilepsy with auditory feature (EAF). PLAIN LANGUAGE SUMMARY: In this study, we report a new MICAL-1 pathogenic variant in a patient without family history for epilepsy, not inherited from his parents. MICAL-1 is a protein with enzymatic activity that reorganizes the structure of the cell. We proved the pathological effect of this variant by testing its enzymatic activity and found an increase of this activity. This result suggests that non-familial cases should be tested to find novel pathogenic variants in this gene.

2.
Ann Neurol ; 94(5): 825-835, 2023 11.
Article in English | MEDLINE | ID: mdl-37597255

ABSTRACT

OBJECTIVE: Familial mesial temporal lobe epilepsy (FMTLE) is an important focal epilepsy syndrome; its molecular genetic basis is unknown. Clinical descriptions of FMTLE vary between a mild syndrome with prominent déjà vu to a more severe phenotype with febrile seizures and hippocampal sclerosis. We aimed to refine the phenotype of FMTLE by analyzing a large cohort of patients and asked whether common risk variants for focal epilepsy and/or febrile seizures, measured by polygenic risk scores (PRS), are enriched in individuals with FMTLE. METHODS: We studied 134 families with ≥ 2 first or second-degree relatives with temporal lobe epilepsy, with clear mesial ictal semiology required in at least one individual. PRS were calculated for 227 FMTLE cases, 124 unaffected relatives, and 16,077 population controls. RESULTS: The age of patients with FMTLE onset ranged from 2.5 to 70 years (median = 18, interquartile range = 13-28 years). The most common focal seizure symptom was déjà vu (62% of cases), followed by epigastric rising sensation (34%), and fear or anxiety (22%). The clinical spectrum included rare cases with drug-resistance and/or hippocampal sclerosis. FMTLE cases had a higher mean focal epilepsy PRS than population controls (odds ratio = 1.24, 95% confidence interval = 1.06, 1.46, p = 0.007); in contrast, no enrichment for the febrile seizure PRS was observed. INTERPRETATION: FMTLE is a generally mild drug-responsive syndrome with déjà vu being the commonest symptom. In contrast to dominant monogenic focal epilepsy syndromes, our molecular data support a polygenic basis for FMTLE. Furthermore, the PRS data suggest that sub-genome-wide significant focal epilepsy genome-wide association study single nucleotide polymorphisms are important risk variants for FMTLE. ANN NEUROL 2023;94:825-835.


Subject(s)
Epilepsy, Temporal Lobe , Seizures, Febrile , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/diagnosis , Genome-Wide Association Study , Seizures, Febrile/genetics , Magnetic Resonance Imaging , Electroencephalography , Syndrome , Hippocampus
3.
Hum Mol Genet ; 31(5): 665-673, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34508592

ABSTRACT

Autosomal dominant lateral temporal epilepsy (ADLTE) is a genetically heterogeneous neurologic disorder clinically characterized by focal seizures with auditory symptoms and/or aphasia. About 20% of ADLTE families segregate disease-causing heterozygous mutations in RELN, a brain-expressed gene encoding the secreted protein Reelin. Using a cell-based secretion assay, we show that pathogenic RELN mutations abolish or significantly reduce secretion of mutant proteins and that this secretion defect results from impaired trafficking of mutant Reelin along the secretory pathway. Confocal immunofluorescence analysis of transiently transfected cells shows that Reelin mutant proteins are degraded by the autophagy system, as revealed by increased formation of autophagosomes immunoreacting with the autophagy markers p62 and LC3. In addition, LC3 immunoblotting shows a significant increase of autophagy flux due to mutant overexpression. Finally, we show that the secretion defect of mutant proteins can be partially rescued by small-molecule correctors. Altogether, these results suggest that Reelin mutant proteins are not properly secreted and that they are degraded through the autophagy pathway.


Subject(s)
Epilepsy, Temporal Lobe , Nerve Tissue Proteins , Epilepsy, Temporal Lobe/genetics , Humans , Mutant Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Reelin Protein , Serine Proteases/genetics
4.
Epileptic Disord ; 22(4): 443-448, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32723706

ABSTRACT

Reelin mutations are responsible for a minority of families with autosomal dominant lateral temporal lobe epilepsy. Here, we report a novel nuclear family with distinct clinical and neuroradiological findings. We studied the proband and her mother by means of EEG, video-EEG, 3T MRI, FDG-PET and genetic testing. Both patients had a focal drug-resistant epilepsy with onset at the age of 16 and focal seizures with typical auditory features combined with fear, followed by loss of contact or evolving to bilateral tonic-clonic seizures. The proband's ictal EEG showed clear left temporal seizure onset, and cerebral MRI revealed subtle left temporal changes (mild hypotrophy, slight blurring of the white and grey matter and hyperintensity) with corresponding left temporal mesial focal hypometabolism on FDG-PET. Genetic testing identified a missense variant, c.6631C>T (p.Arg2211Cys), in reelin repeat #5 in both patients, which markedly affected the secretion of the protein. The data from this family support previous findings indicating that reelin mutations are a cause of autosomal dominant lateral temporal lobe epilepsy which has a clinical spectrum that may also encompass drug-resistant epilepsy associated with mild MRI temporal changes.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Epilepsy, Frontal Lobe/diagnosis , Epilepsy, Frontal Lobe/genetics , Extracellular Matrix Proteins/genetics , Nerve Tissue Proteins/genetics , Serine Endopeptidases/genetics , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/genetics , Adult , Aged , Electroencephalography , Epilepsy, Frontal Lobe/pathology , Epilepsy, Frontal Lobe/physiopathology , Female , Humans , Magnetic Resonance Imaging , Pedigree , Reelin Protein , Sleep Wake Disorders/pathology , Sleep Wake Disorders/physiopathology
5.
Expert Rev Neurother ; 20(3): 251-269, 2020 03.
Article in English | MEDLINE | ID: mdl-31941393

ABSTRACT

Introduction: Epileptic disorders are a heterogeneous group of medical conditions with epilepsy as the common denominator. Genetic causes, electro-clinical features, and management significantly vary according to the specific condition.Areas covered: Relevant diagnostic advances have been achieved thanks to the advent of Next Generation Sequencing (NGS)-based molecular techniques. These revolutionary tools allow to sequence all coding (whole exome sequencing, WES) and non-coding (whole genome sequencing, WGS) regions of human genome, with a potentially huge impact on patient care and scientific research.Expert opinion: The application of these tests in children and adults with epilepsy has led to the identification of new causative genes, widening the knowledge on the pathophysiology of epilepsy and resulting in therapeutic implications. This review will explore the most recent advancements in genetic testing and provide up-to-date approaches for the choice of the correct test in patients with epilepsy.


Subject(s)
Epilepsy/diagnosis , Epilepsy/genetics , Genetic Testing , Adult , Child , Epilepsy/therapy , Genetic Testing/trends , Humans
8.
Clin Neurol Neurosurg ; 170: 27-33, 2018 07.
Article in English | MEDLINE | ID: mdl-29723732

ABSTRACT

OBJECTIVES: The Leucine-rich glioma inactivated 1 (LGI1) protein is thought to be implicated in malignant progression of glioma tumors, and mutations in the encoding gene, LGI1, cause autosomal dominant lateral temporal epilepsy, a genetic focal epilepsy syndrome. The aim of this study was to investigate the possible involvement of LGI1 in high-grade glioma-associated epilepsy by analyzing its expression in tumor specimens of patients with and without epilepsy and by searching for LGI1 autoantibodies in the sera these patients. PATIENTS AND METHODS: We examined tumor tissue samples from 24 patients with high-grade gliomas (12 with and 12 without epilepsy) by immunoblot and detected variable amounts of LGI1 in tumor tissues from 9/24 (37%) patients. RESULTS: LGI1 was detected in 7/12 (58%) patients with epilepsy and in 2/12 (16%) patients without epilepsy (p = 0.0894; Fisher's exact test). Moreover, testing blood sera of five patients for antibodies against LGI1 revealed LGI1 autoantibodies in two patients, both suffering from epilepsy and expressing LGI1 in tumor tissue. CONCLUSION: Our findings suggest that there may be a preferential expression of LGI1 in high-grade glioma tumors of patients with epilepsy. We also unveil the presence of serum LGI1 autoantibodies in some patients with high-grade gliomas, where they might play an epileptogenic role.


Subject(s)
Astrocytoma/blood , Autoantibodies/blood , Brain Neoplasms/blood , Epilepsy, Temporal Lobe/blood , Glioblastoma/blood , Proteins/metabolism , Adult , Aged , Astrocytoma/diagnosis , Astrocytoma/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/genetics , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioma/blood , Glioma/diagnosis , Glioma/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Male , Middle Aged , Proteins/genetics , Young Adult
9.
Ann Neurol ; 83(3): 483-493, 2018 03.
Article in English | MEDLINE | ID: mdl-29394500

ABSTRACT

OBJECTIVE: Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic focal epilepsy characterized by auditory symptoms. Two genes, LGI1 and RELN, encoding secreted proteins, are implicated in the etiology of ADLTE, but half of the affected families remain genetically unsolved, and the underlying molecular mechanisms are yet to be clarified. We aimed to identify additional genes causing ADLTE to better understand the genetic basis and molecular pathway underlying this epileptic disorder. METHODS: A cohort of Italian ADLTE families was examined by whole exome sequencing combined with genome-wide single-nucleotide polymorphism-array linkage analysis. RESULTS: We identified two ADLTE-causing variants in the MICAL-1 gene: a p.Gly150Ser substitution occurring in the enzymatically active monooxygenase (MO) domain and a p.Ala1065fs frameshift indel in the C-terminal domain, which inhibits the oxidoreductase activity of the MO domain. Each variant segregated with ADLTE in a single family. Examination of candidate variants in additional genes excluded their implication in ADLTE. In cell-based assays, both variants significantly increased MICAL-1 oxidoreductase activity and induced cell contraction in COS7 cells, which likely resulted from deregulation of F-actin dynamics. INTERPRETATION: MICAL-1 oxidoreductase activity induces disassembly of actin filaments, thereby regulating the organization of the actin cytoskeleton in developing and adult neurons and in other cell types. This suggests that dysregulation of the actin cytoskeleton dynamics is a likely mechanism by which MICAL-1 pathogenic variants lead to ADLTE. Ann Neurol 2018;83:483-493.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/genetics , Genetic Variation/genetics , LIM Domain Proteins/genetics , Mutation/genetics , Adult , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Cohort Studies , Female , Humans , Italy , Male , Microfilament Proteins , Middle Aged , Mixed Function Oxygenases , Pedigree , Reelin Protein , Young Adult
10.
Epilepsy Res ; 139: 51-53, 2018 01.
Article in English | MEDLINE | ID: mdl-29179159

ABSTRACT

Autosomal dominant epilepsy with auditory features (ADEAF) is clinically characterized by focal seizures with prominent auditory or aphasic auras and absence of structural brain abnormalities. Mutations in LGI1 and RELN genes account for the disorder in about 50% of ADEAF families. In a recent paper, a heterozygous intragenic deletion in the CNTNAP2 gene has been associated to ADEAF in a single family. We screened 28 ADEAF families for mutations in CNTNAP2 by next generation sequencing and copy number variation analyses and found no likely pathogenic mutations segregating with the disease. CNTNAP2 should be screened in genetically unsolved ADEAF families, but causative mutations are expected to be infrequent in this gene.


Subject(s)
Epilepsy, Temporal Lobe/genetics , Membrane Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , DNA Copy Number Variations , Family , Genetic Predisposition to Disease , Humans , Reelin Protein
11.
Epilepsy Behav ; 68: 103-107, 2017 03.
Article in English | MEDLINE | ID: mdl-28142128

ABSTRACT

OBJECTIVE: To describe the clinical phenotype of 7 families with Autosomal Dominant Lateral Temporal Lobe Epilepsy (ADLTE) related to Reelin (RELN) mutations comparing the data with those observed in 12 LGI1-mutated pedigrees belonging to our series. METHODS: Out of 40 Italian families with ADLTE, collected by epileptologists participating in a collaborative study of the Commission for Genetics of the Italian League against Epilepsy encompassing a 14-year period (2000-2014), 7 (17.5%) were found to harbor heterozygous RELN mutations. The whole series also included 12 (30%) LGI1 mutated families and 21 (52.5%) non-mutated pedigrees. The clinical, neurophysiological, and neuroradiological findings of RELN and LGI1 mutated families were analyzed. RESULTS: Out of 28 affected individuals belonging to 7 RELN mutated families, 24 had sufficient clinical data available for the study. In these patients, the epilepsy onset occurred at a mean age of 20years, with focal seizures characterized by auditory auras in about 71% of the cases, associated in one-third of patients with aphasia, visual disturbances or other less common symptoms (vertigo or déjà-vu). Tonic-clonic seizures were reported by almost all patients (88%), preceded by typical aura in 67% of cases. Seizures were precipitated by environmental noises in 8% of patients and were completely or almost completely controlled by antiepileptic treatment in the vast majority of cases (96%). The interictal EEG recordings showed epileptiform abnormalities or focal slow waves in 80% of patients, localized over the temporal regions, with marked left predominance and conventional 1,5T MRI scans were not contributory. By comparing these findings with those observed in families with LGI1 mutations, we did not observe significant differences except for a higher rate of left-sided EEG abnormalities in the RELN group. SIGNIFICANCE: Heterozygous RELN mutations cause a typical ADLTE syndrome, indistinguishable from that associated with LGI1 mutations.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Epilepsy, Frontal Lobe/genetics , Extracellular Matrix Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , Phenotype , Serine Endopeptidases/genetics , Sleep Wake Disorders/genetics , Adult , Epilepsy, Frontal Lobe/diagnosis , Female , Humans , Italy , Male , Pedigree , Reelin Protein , Sleep Wake Disorders/diagnosis , Young Adult
12.
PLoS Genet ; 12(10): e1006376, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27760137

ABSTRACT

Autosomal dominant lateral temporal epilepsy (ADTLE) is a focal epilepsy syndrome caused by mutations in the LGI1 gene, which encodes a secreted protein. Most ADLTE-causing mutations inhibit LGI1 protein secretion, and only a few secretion-positive missense mutations have been reported. Here we describe the effects of four disease-causing nonsynonymous LGI1 mutations, T380A, R407C, S473L, and R474Q, on protein secretion and extracellular interactions. Expression of LGI1 mutant proteins in cultured cells shows that these mutations do not inhibit protein secretion. This finding likely results from the lack of effects of these mutations on LGI1 protein folding, as suggested by 3D protein modelling. In addition, immunofluorescence and co-immunoprecipitation experiments reveal that all four mutations significantly impair interaction of LGI1 with the ADAM22 and ADAM23 receptors on the cell surface. These results support the existence of a second mechanism, alternative to inhibition of protein secretion, by which ADLTE-causing LGI1 mutations exert their loss-of-function effect extracellularly, and suggest that interactions of LGI1 with both ADAM22 and ADAM23 play an important role in the molecular mechanisms leading to ADLTE.


Subject(s)
ADAM Proteins/genetics , Epilepsy, Frontal Lobe/genetics , Nerve Tissue Proteins/genetics , Protein Interaction Maps/genetics , Proteins/genetics , Sleep Wake Disorders/genetics , ADAM Proteins/chemistry , ADAM Proteins/metabolism , Amino Acid Substitution/genetics , Animals , COS Cells , Cell Membrane/genetics , Cell Membrane/metabolism , Chlorocebus aethiops , Epilepsy, Frontal Lobe/pathology , Humans , Intracellular Signaling Peptides and Proteins , Mutation, Missense , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Conformation , Protein Folding , Proteins/chemistry , Proteins/metabolism , Sleep Wake Disorders/pathology
14.
Epilepsia ; 56(10): e168-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26216793

ABSTRACT

Mutations in the DEPDC5 (DEP domain-containing protein 5) gene are a major cause of familial focal epilepsy with variable foci (FFEVF) and are predicted to account for 12-37% of families with inherited focal epilepsies. To assess the clinical impact of DEPDC5 mutations in familial temporal lobe epilepsy, we screened a collection of Italian families with either autosomal dominant lateral temporal epilepsy (ADLTE) or familial mesial temporal lobe epilepsy (FMTLE). The probands of 28 families classified as ADLTE and 17 families as FMTLE were screened for DEPDC5 mutations by whole exome or targeted massive parallel sequencing. Putative mutations were validated by Sanger sequencing. We identified a DEPDC5 nonsense mutation (c.918C>G; p.Tyr306*) in a family with two affected members, clinically classified as FMTLE. The proband had temporal lobe seizures with prominent psychic symptoms (déjà vu, derealization, and forced thoughts); her mother had temporal lobe seizures, mainly featuring visceral epigastric auras and anxiety. In total, we found a single DEPDC5 mutation in one of (2.2%) 45 families with genetic temporal lobe epilepsy, a proportion much lower than that reported in other inherited focal epilepsies.


Subject(s)
Epilepsy, Temporal Lobe/genetics , Family Health , Mutation/genetics , Repressor Proteins/genetics , Adult , DNA Mutational Analysis , Female , GTPase-Activating Proteins , Humans , Italy , Male
15.
Am J Hum Genet ; 96(6): 992-1000, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26046367

ABSTRACT

Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Epilepsy, Frontal Lobe/genetics , Epilepsy, Frontal Lobe/pathology , Extracellular Matrix Proteins/genetics , Models, Molecular , Mutation, Missense/genetics , Nerve Tissue Proteins/genetics , Serine Endopeptidases/genetics , Sleep Wake Disorders/genetics , Sleep Wake Disorders/pathology , Animals , Base Sequence , Cell Adhesion Molecules, Neuronal/blood , Cell Adhesion Molecules, Neuronal/chemistry , Cell Adhesion Molecules, Neuronal/metabolism , Chromosome Mapping , Exome , Extracellular Matrix Proteins/blood , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Fluorescent Antibody Technique , Gene Components , Humans , Immunoblotting , Intercellular Signaling Peptides and Proteins , Molecular Sequence Data , Nerve Tissue Proteins/blood , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Pedigree , Polymorphism, Single Nucleotide/genetics , Protein Conformation , Protein Folding , Proteins/metabolism , Rats , Reelin Protein , Sequence Analysis, DNA , Serine Endopeptidases/blood , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism
16.
Hum Mol Genet ; 24(11): 3082-91, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25691535

ABSTRACT

Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatment.


Subject(s)
Epilepsy, Temporal Lobe/genetics , Galanin/genetics , Adult , Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , DNA Mutational Analysis , Genetic Association Studies , Humans , Mutation, Missense , Pedigree , Protein Binding , Signal Transduction
17.
Epilepsy Res ; 110: 132-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25616465

ABSTRACT

PURPOSE: Autosomal dominant lateral temporal epilepsy (ADLTE) is a genetic focal epilepsy syndrome characterized by prominent auditory or aphasic symptoms. Mutations in LGI1 account for less than 50% of ADLTE families. We assessed the impact of LGI1 microrearrangements in a collection of ADLTE families and sporadic lateral temporal epilepsy (LTE) patients, and investigated novel ADLTE and LTE patients. METHODS: Twenty-four ADLTE families and 140 sporadic LTE patients with no evidence of point mutations in LGI1 were screened for copy number alterations using multiplex ligation-dependent probe amplification (MLPA). Newly ascertained familial and sporadic LTE patients were clinically investigated, and interictal EEG and MRI findings were obtained; probands were tested for LGI1 mutations by direct exon sequencing or denaturing high performance liquid chromatography. RESULTS: We identified a novel microdeletion spanning LGI1 exon 2 in a family with two affected members, both presenting focal seizures with visual symptoms. Also, we identified a novel LGI1 missense mutation (c.1118T > C; p.L373S) in a newly ascertained family with focal seizures with prominent visual auras, and another missense mutation (c.856T > C; p.C286R) in a sporadic patient with auditory seizures. CONCLUSIONS: We describe two novel ADLTE families with predominant visual auras segregating pathogenic LGI1 mutations. These findings support the notion that, in addition to auditory symptoms, other types of auras can be found in patients carrying LGI1 mutations. The identification of a novel microdeletion in LGI1, the second so far identified, suggests that LGI1 microrearrangements may not be exceptional.


Subject(s)
Epilepsy, Frontal Lobe/genetics , Epilepsy, Frontal Lobe/physiopathology , Epilepsy, Temporal Lobe/genetics , Proteins/genetics , Sleep Wake Disorders/genetics , Sleep Wake Disorders/physiopathology , Aged , Brain/pathology , Brain/physiopathology , DNA Copy Number Variations , Epilepsy, Frontal Lobe/pathology , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/physiopathology , Family , Female , Humans , Intracellular Signaling Peptides and Proteins , Male , Middle Aged , Mutation, Missense , Pedigree , Sequence Deletion , Sleep Wake Disorders/pathology , Young Adult
18.
Prog Brain Res ; 213: 141-58, 2014.
Article in English | MEDLINE | ID: mdl-25194488

ABSTRACT

In the past 2 years, mutations in the PRRT2 gene have been identified in patients and families with a variety of early-onset paroxysmal disorders, including various paroxysmal dyskinesias, benign familial infantile seizures, hemiplegic migraine, and episodic ataxia. In this chapter, we describe the wide clinical spectrum associated with PRRT2 mutations and present the current hypotheses on the underlying pathophysiology. Through its interaction with the presynaptic plasma membrane protein SNAP25, the PRRT2 protein may play a role in synaptic regulation in the cortex and basal ganglia. PRRT2 mutations likely have a loss-of-function effect and result in synaptic deregulation and neuronal hyperexcitability. The molecular bases underlying phenotypic variability are still unclear. Elucidating the molecular pathways linking the genetic defect to its clinical expression will improve treatment of these disorders.


Subject(s)
Chorea/genetics , Epilepsy, Benign Neonatal/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Child , Child, Preschool , Genotype , Humans , Infant , Phenotype
19.
Epilepsia ; 55(10): 1651-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25243798

ABSTRACT

OBJECTIVE: Autosomal dominant lateral temporal epilepsy (ADLTE) is a focal epileptic syndrome characterized by auditory or aphasic auras. Mutations in the LGI1 gene account for <50% of ADLTE families. To identify copy number variants (CNVs) related to ADLTE, we examined a collection of ADLTE families without LGI1 mutations. METHODS: Twenty-one families were included based on a history of focal seizures with auditory and/or receptive aphasic symptoms in two or more individuals, absence of brain abnormalities, and negative LGI1 test. DNA suitable for single nucleotide polymorphism-array analysis was genotyped using the high-density HumanOmni1-Quad v1.0 beadchip (Illumina). CNVs were inferred using the PennCNV algorithm. Selected CNVs were validated by real-time quantitative polymerase chain reaction (qPCR). RESULTS: We analyzed 62 affected and 114 unaffected members of our study families and identified a total of 11,214 CNVs, corresponding to 1,890 unique regions with an average size of 67.3 kb. Most CNVs were <50 kb, whereas a small proportion (1.2%) exceeded 500 kb. We identified 12 rare CNVs that segregated with lateral temporal epilepsy in single families. Particularly, we found rare microdeletions within or near two genes, RBFOX1 and NRXN1, previously shown to harbor deletions associated with idiopathic generalized epilepsy, and a microduplication in the proximal region of chromosome 1q21.1, where duplications have been associated with various neurodevelopmental disorders and epilepsy. We also found numerous polymorphic CNVs in the affected members of one or more families, including a deletion of the PCDHA8/10 genes, which was enriched in the patients of our family cohort. SIGNIFICANCE: Our results provide clues on genes for susceptibility to ADLTE, particularly in those families where the inheritance pattern is less compatible with autosomal dominance. Some of these genes also confer risk for other epilepsy syndromes.


Subject(s)
DNA Copy Number Variations/genetics , Epilepsy, Temporal Lobe/genetics , Genetic Predisposition to Disease/genetics , Female , Genotyping Techniques , Humans , Male , Pedigree , Polymorphism, Single Nucleotide/genetics , Real-Time Polymerase Chain Reaction
20.
Epilepsy Res ; 108(2): 232-40, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24315020

ABSTRACT

PURPOSE: To describe the clinical findings in a family with a benign form of mesial temporal lobe epilepsy and to identify the causative genetic factors. METHODS: All participants were personally interviewed and underwent neurologic examination. The affected subjects underwent EEG and most of them neuroradiological examinations (MRI). All family members were genotyped with the HumanCytoSNP-12 v1.0 beadchip and linkage analysis was performed with Merlin and Simwalk2 programs. Exome sequencing was performed on HiSeq2000, after exome capture with SureSelect 50 Mb kit v2.0. RESULTS: The family had 6 members with temporal lobe epilepsy. Age at seizure onset ranged from 8 to 13 years. Five patients had epigastric auras often associated to oro-alimentary automatic activity, 3 patients presented loss of contact, and 2 experienced secondary generalizations. Febrile seizures occurred in 2 family members, 1 of whom also had temporal lobe epilepsy. EEG showed focal slow waves and epileptic abnormalities on temporal regions in 1 patient and was normal in the other affected individuals. MRI was normal in all temporal lobe epilepsy patients. We performed single nucleotide polymorphism-array linkage analysis of the family and found suggestive evidence of linkage (LOD score=2.106) to a region on chromosome 3q26. Haplotype reconstruction supported the linkage data and showed that the majority of unaffected family members carried the haplotype at risk. Whole exome sequencing failed to identify pathogenic mutations in genes of the candidate region. CONCLUSIONS: Our data suggest the existence of a novel locus for benign familial mesial temporal lobe epilepsy on chromosome 3q26. Our failure to identify pathogenic mutations in genes of this region may be due to limitations of the exome sequencing technology.


Subject(s)
Chromosomes, Human, Pair 3/genetics , Epilepsy, Temporal Lobe/congenital , Genetic Linkage/genetics , Adolescent , Child , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/genetics , Female , Humans , Male , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...